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Abstract 
This study examines the relative effectiveness of highly developed Artificial Intelligence (AI) autopilots and 

trained human pilots in dealing with any in-flight emergency scenarios. The growing role of automation in the 

cockpit, which was fuelled by the prospect of contributing to a decrease in human error, which is one of the causal 

factors of most of the aviation accidents, has cast a crucial question: can an AI system be better at crisis 

management than human cognition? The paper is a synthesis of a wide body of flight data that is gathered through 

accident and incident reports in the real world (e.g., US Airways Flight 1549, Air Inter Flight 148) and 

performance data of high-fidelity simulated crisis scenarios (e.g., DARPA Air Combat Evolution program). We 

suggest a bifurcated model of performance: (1) in situations with pre-programmed emergencies, such as engine 

failure on takeoff, sensor failures, etc., AI systems perform almost flawlessly and quickly within set parameters 

and are not cognitively loaded and exhausted. (2) The performance of human pilots is better in new, edge case 

emergencies (e.g. complex systems failures in combination with unknown environmental conditions) that are 

beyond the training data of the AI and require adaptative problem solving, creative judgement and graceful 

degradation. In this paper, the argument is that although AI has a great potential to improve safety by reducing 

the established human error, the lack of adaptability to new conditions in unanticipated scenarios implies that the 

adaptive cognition of a human pilot is, in the near future, the most important element of safety. The results indicate 

that replacement is not the best way to go but rather a human-AI joint or centaur approach, where AI handles 

deterministic tasks, offers decision-support, with the human having final strategy control over the uncertainty and 

newness. 
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I. Introduction 
Background and Problem Statement 1.1 Background and Problem Statement. 

Although the aviation industry is extraordinarily safe, human error, which can be caused by fatigue, stress, 

and cognitive overload, is the leading cause of accidents. This has led to an incremental change of human-centered 

control to advanced, AI-based, automation. 

This development brings an essential conflict in the middle. Advocates propose that AI, being unaffected 

by panic and having the ability to process vast amounts of data, is quicker and more efficient in providing an 

optimal response to familiar emergencies. The weakness, however, is brittle: an AI can work perfectly well in its 

programming, but it can also become disastrous when faced with a new edge case, with which it does not have 

any training example. 

The Miracle on the Hudson (US Airways Flight 1549) on the other hand is a demonstration of human 

flexibility. The bird strike of two engines at low altitude was such an unusual case that the automation could not 

have dealt with it. The success of Captain Sullenberger depended on distinctly human abilities: quick and 

innovative decision-making and awareness of situations. 

This is the main research question: Which agent, AI or human, offers the most margin of safety in the 

entire range of potential emergencies, both the ones that can be predicted and the ones that are completely new? 

 

1.2 Research Gap and Objectives 

Whereas the literature on the human factor (HFACS) and, distinctly, the technical potential of machine 

learning (ML) in aviation is extensive, there is a relative lack of combination that compares directly AI with 

human pilots based on similar metrics of real-world and simulated data. A great portion of existing literature is 

polarized: this or that literature or article praises AI because it performs better on particular, simulated tasks 

(DARPA, 2024) or justifies the superiority of human primacy through the lens of the case study of human 
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ingenuity (Sullenberger, 2019). 

This paper seeks to fill this gap by synthesizing such incongruent data sources. The main research questions of 

this study are: 

To critically analyze and classify real-life aviation accidents and cases where (a) the failure/confusion of 

automation was the key element and (b) the human factor in an unfamiliar crisis was the key element to a 

successful result. 

To compare performance information of high-fidelity simulations, which involve AI agents and trained human 

pilots as test subjects subjected to the same, complicated emergency conditions. 

To come up with a conceptual framework which would enable comparison of AI and human performance on the 

spectrum of emergencies, including both programmable (deterministic) and unpredictable (stochastic). 

In order to address the main research question: Can an AI autopilot be used in emergency cases in a better way 

compared to a trained human pilot? Under what circumstances, more precisely, is one more successful than the 

other is? 

 

1.3 Paper Rational and Paper Structure. 

The results of this exploration have far reaching consequences in future of cockpit design, pilot training 

and certification on the part of regulatory bodies. Since the industry is shifting towards single-pilot or even fully 

autonomous commercial flight, the ability to perceive the strengths and weaknesses of AI and human cognition 

clearly is not a scholarly requirement, but an inherent safety necessity. 

The present paper is organized as follows: Section 2, Literature Review, will focus on discussing the 

theoretical principles underlying human factors in the aviation industry, the history of cockpit automation, and the 

state-of-the-art in AI-oriented aviation. The qualitative comparative case study method will be described in section 

3, Methodology, which will entail the criteria used to choose real-world incidents and the parameters of the 

simulated cases to be reviewed. In section 4, Analysis and Findings, the synthesized data will be given, and the 

direct comparison between AI and human performance will be done in both deterministic and stochastic settings 

of emergency situations. These findings will be interpreted in Section 5, Discussion, and the limitations of current 

AI discussed and a proposal of a future cockpit is suggested as a centaur (human-AI collaboration). Lastly, Section 

6, Conclusion, will conclude the research by summarizing it, restating the key points and giving recommendations 

on what future research should focus on. 

 

II. Literature Review 
The main thesis of the given paper the comparison of crisis management skills of AI and human pilots is 

not a fresh topic. It is the contemporary form of a dialogue which started with the initial presentation of crudely 

developed autopilots (Wiener and Curry, 1980). This literature review summarizes the work of three, though 

profoundly interconnected, fields, namely (1) human factors and cognitive psychology, which elaborates the 

performance envelope of the human pilot; (2) aviation automation and human-machine interaction, which 

discusses the performance of the existing automated systems; and (3) computer science and artificial intelligence, 

which discusses the capabilities of current AI agents. 

 

2.1 The Human Pilot: the Cognitive Strengths and Weaknesses. 

Human pilot is and will always remain the most versatile, flexible part in the aviation system. 

Nevertheless, this freedom of choice is accompanied by the physiological and cognitive restriction. The research 

on such constraints is covered within the rubric of human factors. 

 

2.1.1 Human Fallacy and Thinking Bias. 

The harsh truth about the safety of the aviation industry is that much of the accidents, which are estimated 

to be 60-80 percent can be linked to a human error in one way or another (Shappell and Wiegmann, 2017). Human 

Factors Analysis and Classification System (HFACS) created by Shappell and Wiegmann is a method to 

understand these errors and categorize them based on the unsafe acts (e.g. skill-based, decision error, violation) 

and the preconditions, which enable them (e.g. fatigue, cognitive overload, poor communication) (Shappell and 

Wiegmann, 2017). 

The human pilot works under crunching psychological pressure in case of an emergency. This pressure 

causes cognitive tunneling, a constriction of attention in which the pilot concentrates on the most salient data 

stream to them as the other important streams are ignored (Endsley, 2018). This can be disastrous. As an 

illustration, during the example of Air France Flight 447 in 2009, the pilots were not able to realize the simple 

fact that the plane was in a deep aerodynamic stall because they were also distracted with the conflicting 

instrument readings due to the loss of airspeed indicators and a stall warning (BEA, 2012). A computer, however, 

is free of this emotional and physiological cascade in an AI. It does not "panic." It has the ability to track all 

streams of data concurrently and in theory, would instantly detect the stall condition and apply the programmed 
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recovery procedure (Kroen, 2023). 

 

2.1.2 The Tipping point of the Cognitive Load. 

The cognitive load theory assumes that the working memory of a human being is a finite resource (Sweller, 

1988). Regular flight services are such that the cognitive load of the pilot is held at a manageable level. However, 

an emergency brings a short-term, non-linear upsurge in this load. The pilot is required to fly the aircraft, 

troubleshoot a complicated failure, and speak to the air traffic control and perform emergency checklists 

simultaneously (Casner, 2019). Experiments with flight simulators prove that there is a definite tipping point 

beyond which with the growth of cognitive load, the quality of decisions and reaction time of a pilot decreases 

dramatically (Hancock and Verwey, 2016). Recent research, like that of Fraunhofer-Gesellschaft, is working on 

systems to record biosignals of a pilot (e.g. pulse, respiratory rate) to measure this cognitive load in real-time, 

which has shown to be fundamental in performance (Fraunhofer-Gesellschaft, 2025). 

 

2.1.3 The Power of Human Adaptability. 

The adaptive problem-solving is where the human pilot excels at the current AI (Sullenberger, 2019). 

Human cognition is the most graceful type of degradation. In case one of the systems fails, a human pilot may 

occasionally have some control over the rest, which has deteriorated. More to the point, human beings have 

abductive reasoning the capacity to fish out the most probable hypothesis using partial or new information 

(Endsley, 2018). 

The example of a US Airways Flight 1549 is the typical illustration of this human resource. According to 

the accident report of NTSB (2010) the accident which was a total loss of thrust in both engines due to a bird 

strike at a low altitude in a highly populated area, was so beyond the established emergency response that its 

successful completion depended on the ingenuity and adaptive actions of the crew. The choice of Captain 

Sullenberger to land in the Hudson river was not a programmed emergency response but a new response to a new 

situation, which was synthesized in real-time by a seasoned expert. The ability to think beyond the algorithm in 

an entirely novel situation is the ultimate benefit of the human being and the greatest drawback of the AI 

(Sullenberger, 2019). 

 

2.2 The Automated Cockpit Awakening: Opportunity and Danger. 

Reduction of human error is the most important reason why automation should be implemented. Having 

machines perform routine work (e.g. navigation, altitude holding) as well as even complicated work (e.g. autoland) 

offloads the pilot so that they can attend to high-level management and situation awareness (Wiener and Curry, 

1980). This philosophy of human-centered automation proven to be a successful one has helped the industry to 

record its impressive safety track record (Billings, 1996). 

But this integration has come with a new and more pernicious form of human error and that is one which 

is caused due to automation. Essentially the same risks are still relevant to this day, and in their seminal paper, 

Flight-Deck Automation: Promises and Problems, (1980) Wiener and Curry indicated the following risks that are 

still pertinent today: 

Vigilance and Complacency: Human beings are infamously incompetent at monitoring a highly reliable 

automated system. The unfamiliarity of a pilot with the out-of-the-loop pilots may cause a critical delay in 

detection and response in case the automation fails (Parasuraman and Manzey, 2010). 

Skill Decadency: The manual flying capability of the pilots is removed to the FMS, and hence, pilots 

might be less equipped to assume control and operate the aircraft manually in a life and death situation, particularly 

near the limits of the flight envelope (Casner, 2019). 

Trust and Distrust: Pilots have the potential to have excessively high rates of over-trust in automation, 

which involves acting upon its instructions despite that choice being counter-intuitive or contrary to other available 

information (so-called automation bias). On the other hand, one false alarm would cause a pilot to mistrust and 

de-activate an otherwise working system, which would add unnecessary burden to his/her workload (Lee and See, 

2004). 

 

2.3 When Automation Confuses Modes and Surprises: the Brittleness of Automation. 

Mode confusion is the most severe failure condition of contemporary cockpits. This happens when the 

human pilot thinks that the automation is doing something (e.g., descending at a given vertical speed) but in the 

actual sense, it is doing something different (e.g., descending to a target altitude, which the pilot has preselected) 

(Degani, 2012). The complexity of the FMS, its myriad nested modes, and sub-modes, places a gulf of evaluation 

in which the mental model of the system state in the pilot does not correspond to the actual state of the system 

(Endsley, 2018). 
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A textbook example is the 1992 crash of the Air Inter Flight 148. Meaning to choose a flight path angle 

of descent at -3.3 degrees, the crew chose a-3,300 feet-per-minute vertical speed, which is a disastrously steep 

rate of descent. The cockpit interface utilized the same window on both modes and the pilots did not see the slight 

difference in the visual cue. The plane, which acted as commanded, crashed on a mountain (Bureau of Enquiry 

and Analysis for Civil Aviation Safety [BEA], 1993). This was not a mechanical problem, this was a human-

computer interaction problem. The automation was not intelligent it was fragile. It had no common-sense 

background to appreciate that a descent at that altitude of 3,300 ft/min was a suicidal order. 

This weakness makes the limitation of automation over intelligence apparent. A script is implemented by 

automation. In contrast, intelligence entails context, objectives and insight (Sullenberger, 2019). The human pilot, 

regardless of his or her imperfection has this contextual knowledge. 

 

2.4 The AI Pilot: Machine Learning in Safety-Critical Areas. 

The current AI, powered by machine learning (ML), is going to address the so-called brittleness of the 

older automation. Compared to inflexible if-then systems, ML agents are able to learn on enormous data sets. 

Good examples are found in the ACE program at DARPA. A machine based on AI was able to beat a 

professional F-16 pilot in simulated dogfights 5-0 and then even flew the experimental X-62A in a live test. These 

findings illustrate inhuman accuracy during a specified crisis. 

This success should however be understood with reservations. There are rules in a dogfight just as there 

are in chess. The actual problem with AI is novelty or edge cases; i.e., those situations that it has never been 

trained on, like a dual-engine bird strike or volcanic ash ingestion. It is erratic in its reaction to such occurrences. 

Moreover, the black box quality of deep learning brings about a nightmares of accountability and certification 

should the AI commit an error, which is fatal and inexplicable. 

This shows one of the main contradictions: humans are imperfect due to stress, and AI is perfect due to novelty. 

 

III. Methodology/Approach 
The proposed study is conducted using a qualitative, comparative, case study research design to 

synthesize and analyze the two performance data sets in two different, but complementary, areas: (1) the real-life 

occurrences of accidents and incidents in the aviation industry, and (2) the simulated crisis situations in high-

fidelity settings. 

The reason why a comparative synthesized approach is justified is that the issue under consideration 

involves a technical aspect and may be viewed as a form of technological challenge that can be addressed through 

technology transfer.<|human|>The rationale behind a Comparative Synthesized Approach is that the problem at 

hand is technical in nature and can be considered a technological challenge which could be solved by means of 

technology transfer. 

A quantitative or a qualitative methodology would be inadequate to provide the answer to the research 

question. An empirical study of actual emergencies is statistically unproblematic in that so-called novel, or black 

swan emergencies are by definition low-frequency, high-consequence events (N-of-1) which cannot be 

statistically aggregated (Taleb, 2007). On the other hand, an entirely simulation-based study is prone to the bias 

of AI. A simulation, regardless of its fidelity, exists in an environment of closed and totally defined rules, physics 

and potential failures. This is a setting that can be computationally known in a manner that the real world cannot, 

so the strengths of an AI agent in optimization and implementation in a specified set of states are more beneficial 

(Sullenberger, 2019). 

Thus, the methodology in this paper is a synthesized one. Human pilot performance in stochastic (novel) 

emergency scenarios are analyzed by real-world case studies, and artificial scenarios in deterministic (known) 

emergency scenarios are analyzed by AI and human performance. When comparing the results of these two 

streams of data, it will become possible to create an inclusive view of the relative advantages and disadvantages 

of each agent. 

 

3.2 Analytical Framework The Deterministic-Stochastic Emergency Spectrum. 

This paper presents a conceptual framework The Deterministic-Stochastic Emergency Spectrum to form 

a structure of the analysis. 

Deterministic Emergencies: These are those situations that are known, understood, and which have a 

predetermined optimum action. They are "programmable." This captures the vast majority of checklist-based 

processes (e.g., single-engine failure, cargo fire, rapid depressurization) as well as even highly dynamic but rule-

based processes (e.g., air combat, rejected takeoff). The metrics used to measure performance in this field are 

speed, precision and optimality. 

Stochastic (Novel) Emergencies: Stochastic emergencies or black swan events are edge cases or fall 

outside pre-programmed logic of a system, or training of an AI. They are described as new, vague and cascading 

unexpected and compounding failures. Adaptability, creative problem-solving, and graceful degradation is the 
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measure of performance in the domain. 

The hypotheses of the present paper are that AI performance will be superhuman at the deterministic side of the 

spectrum, whereas human performance will not lose its supremacy at the stochastic one. 

 

3.3 Data Source 1: Real-World flight Incidents and Accident Reports. 

This research will use qualitative data based on official and publicly accessible data of accidents and incidents. 

The cases were never chosen due to their statistical frequency, but rather due to them being archetypal, that is, a 

definite, clear example of the certain performance phenomena, the ones under investigation. 

The case under consideration is the Archetypes of Human Adaptability. 

The selection of these cases is based on the analytical research of human behavior during stochastic (novel) 

emergencies. 

Case 1: US Airways Flight 1549 (NTSB, 2010). This is the typical black swan event. A bird strike on a dual-

engine aircraft 2,818 feet high above one of the most densely populated regions in the world was a new situation 

that did not have a standard practice. The results of the NTSB will be analyzed concerning the decision-making 

process, the situation awareness and the creative problem-solving (e.g., the choice of the river, timely start of the 

APU) that were deemed critical to the survivability of the accident by the NTSB (NTSB, 2010). 

Case 2: United Airlines Flight 232 (NTSB, 1991). The uncontrolled failure of the number two engine fan disk was 

disastrous and resulted in the total loss of all the three hydraulic systems. This plane was made uncontrollable by 

the standard controls. The crew learned to operate the plane by hand, through a procedure of real-time 

experimentation, which culminated in them learning how to control the plane by hand, by manipulating the thrust 

of the remaining two engines. The case is an excellent illustration of human adaptability and graceful degradation 

to a failure cascade that is way beyond any design or training parameter. 

 

3.3.2 Case Selection: Archetypes of Failure in Automation. 

These instances are chosen to examine the fragility of automation and the modes of failure resulting due to poor 

human-machine interface. 

Case 1: Air Inter Flight 148 (BEA, 1993). This accident is the prototype of mode confusion, as it is explained in 

the literature review. The design of the Airbus A320 interface will be analyzed and how a non-intuitive, plain 

design element (vertical speed vs. flight path angle) caused a fatal failure, which a human, possessing some context 

of the circumstance, or even a more intelligent AI, would have immediately recognized as illogical. 

Case 2: Air France Flight 447 (BEA, 2012). The case describes a cascade failure that was triggered by automation. 

An autopilot disconnection, thrust lock, and conflicting stall alarms were as a result of the icing of pitot tubes (a 

deterministic sensor failure). This put the emergency in the hands of the human pilots who were lost, out of the 

loop and handling extreme mental loads. The fact that they never reasoned that the underlying aerodynamic stall 

existed illustrates how human thinking is weakened after the failure of automation. 

Simulated Crisis Scenarios are a source of data used in 3.4. 

This paper is an examination of publicly available reports and data of high-fidelity flight simulations. Such 

simulations play an important role in measuring the performance of AI, because they offer a controlled system 

where AI agents can be retested and directly compared to human standards in deterministic emergencies. 

Case 1: Air Combat Evolution (ACE) Program (DARPA, 2020; 2024). This is where the major input of AI in a 

dynamic crisis is provided. The 2020 simulated trials (an AI agent won a dogfight multiple times against a human 

F-16 pilot) and 2023 live-fly trials (the X-62A VISTA) are the direct pointers to the superhuman performance of 

the AI. The capability of the AI to compute data and execute the best maneuvers in microseconds will be analysed, 

which is an articulate evidence of superiority in a rule-based determinate crisis. 

Case 2: Intelligent Autopilot Systems (IAS) Research (e.g., UCL, 2017). This includes the studies of AI systems 

that will be able to learn and perform regular emergency procedures in the civil aviation. This study examines 

how AI agents can be trained in order to deal with familiar emergencies, including engine failures during takeoff 

or forced landings (Source 1.3). The capabilities of the AI will be analyzed with regard to its capability to perform 

these familiar procedures at an increased speed and accuracy that in simulation is better than the performance of 

human pilots because it is not burdened or subjected to stress on its cognitive side. 

This paper will generalize these findings in the next section by taking the two sets of case studies and studying 

them in the light of the Deterministic-Stochastic Spectrum to provide a direct answer to the research question. 

 

IV. Analysis and Findings 
The comparative evaluation of actual and model case studies that were organized along the 

Deterministic-Stochastic Emergency Spectrum demonstrates an explicit and critical performance split. The 

information does not lend to the yes, or no answer to the research question. Rather, it shows that the human pilots 

cannot be replaced in some forms of emergencies, but AI autopilots are categorically superior in others. The 

greatest threats lie not on either end of this spectrum, but at the gray area of the two. 
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4.1 [?] AI Dominance in Deterministic Emergencies: Speed, Precision and Optimality. 

The former analysis domain deals with the deterministic emergencies; situations that are established, 

characterized, and controlled by a set of clear rules or the best processes. Within this sphere, AI agents, whose 

performance is revealed in high-fidelity, are not only comparable to human pilots; they are even superhuman. 

DARPA Air Combat Evolution (ACE) Program. 4.1.1 DARPA Case Study. 

The most interesting data on AI dominance during a crisis, which involves a high stakes and is deterministic, is 

offered by the DARPA ACE program. A potential breakthrough that could lead to simulation-based AI usage was 

the 2020 simulated AlphaDogfight trials, in which an AI agent of Heron Systems beat an expert human F-16 pilot 

5-0 (DARPA, 2020). The performance of the AI was not only faster, but it was different. 

Speed: The AI agent was able to run on a timescale that was not understandable to a human. It had the ability to 

interpret the maneuvers of the human pilot, compute a shooting solution and perform a counter-maneuver within 

a few micro-seconds (DARPA, 2020). The human pilot was simply too slow because he was held by the so-called 

OODA loop (Observe, Orient, Decide, Act). 

Precision: The AI was able to show superhuman accuracy. It was able to keep its planes at the very end of its 

performance envelope (maximum G-load, minimum airspeed) and not cross it without risking to lose control or 

consciousness, which a human pilot cannot. 

Optimality: The AI did not panic and get flustered. It could not be psychologically affected by battle. It did not 

have cognitive load, fear or fatigue. Each choice was a mathematical cold calculation to maximize the probability 

of winning. The human pilot, on the contrary, may be deceived or lured into an unfavorable situation (DARPA, 

2020). 

These findings were confirmed by the subsequent live-fly experiments in 2023, in which the X-62A VISTA 

aircraft was flown by an AI agent in a live dogfight (DARPA, 2024). This discussion proves that with a rule-

driven, high-dynamism crisis such as air combat, the AI processing speed, and resistance to human factors make 

it the better actor. 

 

Case Analysis 4.1.2 Intelligent Autopilot Systems (IAS) to Civil Emergencies. 

This excellence is applied on familiar civil aviation emergencies. The studies of intelligent autopilots, including 

the intelligent system which was created at University College London, have shown that an AI could be trained 

to respond with unprecedented skill to the emergencies to do with textbooks (UCL, 2017). 

Take on a case of one engine failure (V1 cut). A human pilot has to be conditioned to perform a complicated set 

of tasks when there is a lot of time pressure and startle factor: keep the rudder straight, turn at the right speed, V2 

up the hill, land the landing gear, find and shut the broken engine. It is a risky and heavy load sequence. An AI, 

on the contrary, can be trained to apply this method in a flawless way, at any time. It is capable of providing the 

exact milliseconds of rudder input, pitching the plane to the nose of V2 and the emergency checklist can be 

activated without starting the startled reflex. 

The excellence of the AI in the deterministic field is that it is not affected by human error. It is not a victim of 

cognitive tunneling (as it is the case with Air France 447 crew), it does not deal with errors created under the 

influence of stress, and it is not able to forget about the items on the checklist. In case of any emergency it is 

known, is optimal and programmable,the AI is a more reliable and precise operator. 

 

4.2 [?] Human Preeminence in Stochastic Crises: Flexibility, Innovativeness, and Gracious Deterioration. 

The second area of analysis involves stochastic emergencies, which are new events that are defined as black 

swans, meaning those events that have never been seen before and are thus not included in the training data of the 

AI, or, in the case of the autopilot, the programming. In this field, adaptive thinking of human pilot is not only 

applicable, but it is the main key to survival. 

 

Case Analysis: US Airways Flight 1549 (The "Miracle on the Hudson") 4.2.1. 

The case of human adaptability is clear-cut in the NTSB (2010) investigation of the Flight 1549. It was a two-

engine failure caused by bird strike at 2,818 feet, something that had never occurred before. In 2009 (and perhaps 

even today) no AI system would have been trained to act in this particular scenario: two engines have failed, the 

plane is at low altitude and is flying over a highly concentrated area. 

 

Some of the major decisions, which were not programmed logic, but the result of human thought, are identified 

by the NTSB report: 

Creative Problem-Solving: Ditching in the Hudson River was an abductive decision. The post-accident 

simulations conducted by NTSB revealed that the turn could only be reverted to LaGuardia (the "programmed" 

response) in case the turn was engineered as soon as possible after the bird strike. This was an unrealistic pressure 

of a human crew handling a new and disastrous failure. The fact that Captain Sullenberger made a real-time 

decision that they do not have the energy and altitude to make any runway was a holistic judgment. Without this 
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context of the common sense, an AI might have made an attempt to go back to the airport the most optimal way, 

which was impossible. 

 

Whole Situation Awareness: the fact that Sullenberger can look out the window and make the judgment of the 

glide path of the aircraft and the feel of the plane is an example of expert intuition that has been developed over 

decades. This is a sensory and analog skill which is nearly impossible to reproduce through digital systems. 

Teamwork and Resource Management: Human-centric Crew Resource Management (CRM) was evident in the 

communication of the crew, the fact that they decided to activate the APU (which would give the aircraft electrical 

power after ditching), and in the control of the cabin crew. 

Flight 1549 shows that in case all options that are programmed are used, the human pilot is an innovator and they 

come up with another solution on the spot. 

 

4.2.2 Case analysis; United Airlines Flight 232 (Sioux City). 

This crash of United 232 in 1989 is even deeper illustration of human adaptability to a black box failure. The 

failure of the uncontained failure of the 2 engine cut off all three hydraulic lines making all flight controls useless 

(NTSB, 1991). The plane, according to its design specifications, was unmanageable. 

The crew and a DC-10 instructor pilot took 44 minutes to learn how to fly a crippled aircraft. They found by 

experiment that they could obtain a simulation of directional control by exerting asymmetric propulsion by the 

two remaining engine-mounted wings. 

Graceful Degradation: The system was not functioning at all, yet the human crew degraded beautifully. They 

saved the surviving, working parts (the throttles) and reused them in another use they were never made to perform 

(directional control). 

Teamwork in the cockpit: the cockpit was turned into a research laboratory. The success of the crew which led to 

185 out of 1000 passengers surviving a situation which should have been 100 per cent fatal was a situation of an 

extraordinary level of crew coordination and resourcefulness (NTSB, 1991). 

None of the existing AI could possibly have trained to fly this plane in 44 minutes. The performance of an AI is 

dependent on its training models and data. The logic fails with the AI when the physics of the model (i.e. the 

moving of the yoke moves the control surfaces) is broken. It becomes brittle. However, the human crew did not 

get lost in training and adapted to a new broken physics of their system. 

 

4.3 [?][?] The Risky Cross Over: When Robots Break the Man. 

Most of the worst cases are neither strictly deterministic nor strictly stochastic, but are at the intersection of the 

two at the brittle point. These are the instances when a ( appuringly) deterministic malfunction in the automation 

presents a baffling, stochastic, and overburdened crisis to the human pilot. 

Case Analysis: Air Inter Flight 148 (Mode Confusion) 4.3.1. 

The manifestation of the fragility of automation is the Flight 148. According to the BEA (1993), the A320 had no 

broken autopilot; it was working in fine condition. It faithfully complied with the order of pilots to descend at -

3,300 feet per minute a rate of descent that was absurd at that point of flight. 

Failure of Context: The automation did not have the context or common sense of a human pilot. A human pilot, 

when informed by co-pilot to descend at such rate, would have enquired about the order (Are you sure? That will 

carry us down into the ground.). So did not the brittle automation. 

Bad Human-Machine Interface (HMI): This nub of the issue was a design error. The control panel to choose 

Vertical Speed (-3300) and Flight Path Angle (-3.3) was the same. This indecision coupled with the fact that the 

crew was relatively inexperienced on the new aircraft put them in an ambiguous situation that the automation 

failed to avert. An AI-driven co-pilot of the future would hopefully be programmed to ask about such a risky 

order, e.g. "Confirm descent 3300 feet/minute? It is an unconventional rate, and will lead to ground adjacency. 

The 2002 system did not have this level of intelligence. 

 

4.3.2 Case Study Analysis Air France Flight 447 (Automation Disconnect). 

The final cause of failure (due to automation) is Flight 447 (BEA, 2012). 

Deterministic Start: It was a basic nonrandom failure where the loss of reliable airspeed information due to icing 

the pitot tubes occurred. 

Automation Collapse: The autopilot, having been presented with data which it could not match, simply 

disconnected as it was programmed to do. It "relinquished control," and left a high-altitude, high-speed airplane, 

in a marginal weather condition, to an out of the loop, confused and shocked human crew. 

Human Cognitive Failure: The crew did not identify the underlying issue because they were overloaded with 

cognitive and manifested with cognitive tunneling. They did not perform the fundamental, learned process of 

untrustworthy airspeed, and most importantly, did not realize that they were in a deep airplane stall, regardless of 

a constant warning about being in the stall. They carried a full back-stick, which is the last thing to do in any stall 
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recovery procedure, throughout the 4 minutes descent into the ocean (BEA, 2012). 

This discussion indicates that the stochastic crisis was brought about by the automation itself. Failure of the 

predecessor of the AI (the autopilot) was brittle, and human pilots unprepared and lost in confusion could not 

handle the new, high-stress situation which ensued. A highly-developed AI pilot, hypothetically, would have 

immediately detected the unsound airspeed through the sensor anomalies, dismissed the erroneous information, 

held on to an established power + pitch profile, and left the stall serenely. 

 

V. Discussion 
The results of the comparative analysis give a concise, though extremely subtle, response to the key 

research question. Inquiring whether an AI autopilot is a better pilot in case of an emergency than a human pilot 

is the wrong question to ask. Based on the analysis, it turns out that the category of emergencies is not a unified 

concept. The relative primacy of the agent-machine or human being is completely determined by the character of 

the crisis. The evidence presented in Section 4 forces the shift of a paradigm (AI vs. Human) to the "collaborative" 

one (AI + Human). 

 

5.1 Reading through the Performance Bifurcation: The Paradox of Brittleness vs. Bias. 

The analysis proves to be correct a paradox of Brittleness vs. Bias: AI is good in deterministic (known) 

emergencies, whereas humans are better in stochastic (novel) ones. 

The brittle failure mode of AI is brittle. It may be inhuman in recognizable problems (DARPA experiments) but 

crashes over the cliff when dealing with new "edge cases" (one US 1549) because its world model fails. 

The human failure mode is cognitive overload and prejudice. In Air France 447, the crew being under stress, gave 

in to cognitive tunneling and a fatal bias, and a procedure known to them failed. 

Accidents such as AF 447 demonstrate how dumb automation already causes crises to pilots. It might seem that 

simply replacing the current AI with a more intelligent version is not the answer, but instead it is bound to create 

new and more elaborate means of failure. 

 

5.2 The Black Box Problem: Explainability, Certification and Trust. 

AI performance should not be discussed just in technical terms but in terms of practical reality of 

certification and trust. The DARPA program AI agents are constructed based on deep-reward learning models, 

which are infamously black boxes (Raji et al., 2021). 

Suppose that an AI pilot, in the case of a complicated emergency, makes a decision, leading to a fatal 

accident, how do the investigators know why it took that choice? When the AI learns and develops its own code, 

it will be mathematically inexplicable to its own makers. This poses such an impossible problem to certification 

authorities such as the FAA and EASA whose whole safety philosophy is founded on the deterministic 

verification, validation and traceability. 

Moreover, this is an explainability (or XAI) issue that directly affects human-AI team. An AI partner 

cannot be trusted by a human co-pilot because it can not know how to explain its intentions. When the AI banks 

60 degrees out of the blue, the human pilot must know the reason, is it to avoid traffic (correct), or is it to interpret 

the sensor wrong (incorrect)? The lack of such mutual understanding means that the human pilot will not be able 

to properly oversee the AI, which will result in the failure of the collaborative model (Endsley, 2018). 

 

5.3.1 The Risk of Atrophy of Human Skills. 

A very important, and even counter-intuitive, impact of a highly capable AI co-pilot is that the 

competence of the human pilot will be deteriorated. This has prompted researchers to already determine a definite 

trend of the so-called skill atrophy within the context of manual flying and instrument scan proficiency due to the 

increased prevalence of automation (Casner, 2019). Pilots are turning out to be system managers and not stick-

and-rudder pilots. 

This poses a risky contradiction. We suggest the human in the loop to deal with the 1-in-a-million black 

swan event (such as the US 1549). But by having the AI take over the rest 999,999 flights, we can be de-skilling 

the human pilot in such a way that he/she cannot deal with that new crisis when it does arise. The failure of the 

AF447 pilots to perform a simple stall recovery is a frightening premonition of this issue. Any future cockpit 

should aggressively fight this skill atrophy, which may include forcing pilots to manually navigate simulated 

complex emergencies as a standard and regular part of their task. 

 

5.4 Centaur Model: A Human-on-the-Loop Collaboration Framework. 

The combination of these results inevitably brings to the conclusion that the best possible architecture of 

the aviation safety is neither the fully autonomous AI pilot, nor a throwback to the pre-automation times. A best 

bet would be a human-AI interaction of a model appropriately called a "Centaur" (after the chess centaur players, 

a human with an AI) who perform better than the AI-only and human-only. 
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According to the Deterministic-Stochastic Spectrum, the roles are well-defined in this model: 

AI as the “Intelligent Co-Pilot: The first task of the AI is to be the operator. It also supports all deterministic 

activities: navigation, system control, and, most importantly, the high-rate implementation of familiar emergency 

procedures (engine failures, fire, depressurizations). It is the most suitable agent to these tasks as it is immune to 

stress and cognitive bias. 

AI as the Safety Net: The second purpose of the AI is to be a safeguard of the human error. It would 

monitor human commands based on its context (common sense) which Air Inter 148 automation did not have. In 

the event one of the pilots chooses an unsafe setting, the AI would interfere: "WARNING: This would cause a hit 

on the terrain in 90 seconds: this rate of descent is not safe. Do you confirm?" This makes use of the processing 

capability of the AI to supplement human cognitive constraints. 

Human as the "Mission Commander": The role of human pilot is changed to that of strategist and crisis 

manager. They no longer become the manual operator but an on-the-loop supervisor. Their mental abilities are 

reserved to work on the higher level: overseeing the AI, communication, and, above all, commanding in case some 

emergent, stochastic crisis arises. The final fail-safe of the system is the adaptive reasoning of the human (US 

1549) and the creative experimentation (UA 232). 

This model takes advantage of the speed and accuracy of the AI on the 99.9% of the known operations 

and emergencies and leaves the human with his or her irreplaceable adaptive cognition on the 0.1% of the 

unknown black swan events. 

 

VI. Conclusion 
The aim of this study was to determine whether an AI autopilot is capable of managing an emergency 

scenario more effectively than trained human pilot. The comparison of actual flight data and sophisticated 

simulation conditions proves that there is no all-time best agent.The distinction between capability is revealed in 

a sharp division according to the nature of the emergency and the answer is entirely dependent. 

 

6.1 Summary of Key Findings 

AI Is Stronger in Deterministic Crises: When dealing with known, rule-based or programmable 

emergencies (e.g. V1 cuts, air combat, standard procedures), the AI pilot is proven to be better. This is because of 

its resistance to stress, cognitive bias, and fatigue, its ability to process information in a few seconds with 

unprecedented accuracy that enables it to provide an ideal, life-saving reply each time. It is the optimal agent to 

reduce the established types of human error. 

Human Beings are masters of Stochastic Crises: In novel, black swan emergencies (e.g. US 1549, UA 

232), the adaptive cognition of the human pilot can never be substituted. Humans have the special power of 

creative, abductive thinking and gracious degradation, which enable them to devise a solution to a crisis that is 

out of training and programming. 

The Greatest Threat is Automation Brittleness: The worst-case situations (e.g. AF 447, AI 148) are those 

where the brittleness of existing automation, its out of context nature and its sudden, unpredictable termination, 

causes a now novel and high-stress crisis that overwhelm the human pilot. Such events are not automation or 

human factor failures but automation-human factor failure. 

This confirms the main idea of this paper: AI performance is superhuman at the deterministic end of the emergency 

spectrum whereas human performance is better at the stochastic one. The AI is unsuccessful in that it is frail, the 

human unsuccessful in that it is prejudiced. 

 

6.2 Implication and Future Directions. 

The results of this paper may have important implications concerning the future of the aviation industry. A full-

autonomous, pilotless cockpit is a dangerous venture, at least in the short run, which is expected to occur. The 

system would replace the familiar risks of human prejudice, which can be controlled, with the unfamiliar risks of 

AI frailty, which could be disastrous. 

The most reasonable and secure way to go is the human-AI cooperative model- Centaur. In this design, the human 

is raised to be more of a mission commander rather than an operator and the AI is an intelligent co-pilot. This 

would leave the human in charge of 99.9% of deterministic operations, and, most importantly, able to step in when 

his or her special human bendability becomes necessary. 

The subsequent study should not be based on the AI vs. Human paradigm, but on three essential aspects: 

Explainable AI (XAI): Working on creating AI systems that are capable of defining their intent to a human 

collaborator in a clear and concise way, which is necessary to be certified and trusted. 

HMI: Collaboration Designing cockpit interfaces to promote smooth human-AI teaming, instead of mode 

confusion traps of existing systems. 

Human Skill Preservation: Pro-actively investigating and executing training procedures which will guard against 

atrophy of the manual flying skills so that the human pilot is "in the loop" and prepared to assume command 
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during a new crisis. 

Again, it is not the role of the human pilot that is being terminated but changed. The Miracle on the Hudson was 

no more a product of a bygone age but a big show of the cognitive capability that will be the most important 

safety element in the air transport industry even in the intelligent era of the smart machines. 
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